Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Suzi Webster

A saildrone surrounded by sea ice

Exploring the Pacific Arctic Seasonal Ice Zone With Saildrone USVs

NOAA PMEL researchers sent ocean drones to the U.S. Arctic to test their remote navigation capabilities close to ice and to collect data on Arctic weather, climate, and ecosystems. The saildrones were equipped to observe oceanic and atmospheric variables that are needed to estimate air-sea fluxes of heat, momentum, and carbon dioxide. Comparing Saildrone data to data obtained through existing collection methods allowed researchers to identify ways to improve ice navigation in the future.

Exploring the Pacific Arctic Seasonal Ice Zone With Saildrone USVs Read More »

NOAA issues FY22 call for Phase I SBIR proposals

On November 16, 2021 the National Oceanic and Atmospheric Administration (NOAA) issued its Fiscal Year (FY) 22 Phase I Notice of Funding Opportunity (NOFO) for the Small Business Innovation Research (SBIR) program. NOAA Phase I SBIR awards provide up to $150,000 with up to a six (6) month period of performance for conducting feasibility and proof of concept research with a tentative award start date of August 1, 2022. NOAA encourages proposals from qualified small businesses for highly innovative technologies with strong commercial potential that fit within the NOAA mission areas.

NOAA issues FY22 call for Phase I SBIR proposals Read More »

Small Company Thrives on Commercialization of NOAA’s Miniaturized Particle Spectrometer

POPS is a low-cost, high-sensitivity alternative to traditional aerosol measurement technologies. For many people, hiking is a peaceful escape from everyday stressors. For Dr. Ping Chen, CEO of Handix Scientific Inc., hiking was a starting point of his success. In 2015, he met NOAA inventor and research physicist, Dr. Ru-Shan Gao, on a trail in Boulder, Colorado. As they walked, Gao proudly spoke about NOAA’s recently-developed Portable Optical Particle Spectrometer (POPS) for aerosol measurement. Chen immediately realized the technology’s tremendous potential and expressed interest in licensing and commercializing the technology with a firm belief that POPS was going to be a commercial success. Indeed, with over 200 units of POPS sold across the world to date, it appears that Chen’s premonition became a reality. His new company has since grown from one to twelve full-time employees and Chen expects the demand for POPS to increase in the near future as his team actively explores new markets. Close-up image of POPS components. (Photo by Derek Parks, NOAA) Challenge – Why is aerosol measurement important?  Atmospheric aerosols are microscopic solid or liquid particles that are suspended in the air, such as dust, mists, or smoke. These particles, while tiny, have major impacts on the environment, especially on weather, climate, and air quality. For example, aerosols can either scatter or absorb sunlight to produce a cooling or warming effect on the planet’s climate. Aerosols can also affect cloud formation, which is important for regulating Earth’s energy balance and the hydrological cycle. Furthermore, aerosols serve as active sites for surface chemical reactions that create ozone, which poses a threat to public health. An accurate assessment of aerosol concentration and size distribution in the atmosphere is fundamental for understanding the environmental impacts of aerosols; however, most atmospheric measurements are conducted in situations where using traditional, bulky spectrometers is quite a challenge, such as on airplanes, balloons, and small drones. The need for miniaturized spectrometer technology was very clear, and POPS seemed to be the answer. Indeed, Dr. Ru-Shan Gao, a research physicist at NOAA’s Chemical Sciences Laboratory (CSL), was working on a very long NASA Global Hawk flight when the POPS idea first came to his mind. During the flight, scientists controlled the unmanned aircraft on its mission to collect high-altitude, long-duration atmospheric data. “We were sitting at the hangar watching atmospheric data coming in for 24-hour flights, and we started wondering what we could do to make the Global Hawk more powerful. That was the starting point for our POPS research,” explained Gao. The map shows the monthly average aerosol concentration around the globe. (Image by NOAA NESDIS) Innovative Solution – Miniaturized research-grade aerosol spectrometers POPS is a compact, low-cost, high-sensitivity sensor that enables robust and reliable atmospheric measurements for air quality monitoring. POPS uses a laser to measure and count aerosol particles with diameters ranging from 140 nanometers to 2.5 micrometers. In contrast to conventional particle spectrometers, POPS is particularly suitable for use in drone and balloon missions at a wide range of altitudes from the Earth’s surface to the stratosphere. Gao’s colleagues consider him to be a master craftsman who is able to create clever one-of-a-kind scientific devices for field measurement. Gao explained that “The driving force behind the POPS invention was to develop an aerosol instrument that was small, light, and relatively inexpensive, yet sensitive and robust enough for science-quality atmospheric measurements.” He recognized that the biggest challenge would be to make the technology “miniaturized and cheap enough to become an alternative to already existing spectrometers.” 3D-printing was the ideal solution. The technology enabled Gao to shrink POPS to the size and weight of a lunch-box, simplify the manufacturing process, and cut materials costs down to $2,500. As a result, POPS are one tenth the size and one fifth the cost of traditional comparable instruments. First, second, and third generation prototypes (left to right) were developed in 2012 and 2013.   The result of the 2013 NOAA OAR Special Early-Stage Experimental or Development (SEED) grant is pictured furthest right. (Photo by Ru-Shan Gao, NOAA) The Role of Technology Transfer – Handix Scientific thrives on POPS commercialization Technology partnerships allow private companies to grow and spearhead research and innovation, while also ensuring that technology developed using federal funding fulfills public and private needs. These partnerships are a win-win for both parties involved: private companies commercialize and manufacture new products, while federal labs use the resulting products to support their missions. When the news of POPS spread, Gao was contacted by a number of companies and individuals who were eager to commercialize the invention. Although Gao’s team was convinced of POPS’s commercialization potential from the very beginning, they faced a challenge. He explained, “As scientists and engineers, we had neither the ability nor the knowledge required to deal with the legal details, so we decided to reach out to Derek Parks, deputy director of NOAA’s Technology Partnerships Office.” The team brought the invention to the Technology Partnerships Office in March 2015 and made POPS immediately available for licensing. When Dr. Ping Chen heard about this innovative technology, he realized its tremendous potential and decided to license and commercialize the technology. Chen credited POPS with “Opening the door to new measurement platforms, such as drones and radiosonde balloons, that were not accessible before.” By July 2015, NOAA had negotiated the POPS license agreement with Handix Scientific. “Thanks to the Technology Partnerships Office, the entire technology transfer was rapid and painless,” declared Gao. Chen shared that to this day, his company keeps in constant communication with Gao’s research group for further opportunities, and encouraged other companies to engage with NOAA’s Technology Transfer Program. A small company Handix Scientific improved and commercialized POPS. (Photo by Handix Scientific) Defining Success – Economic impacts on Handix Scientific  The economic impact to Handix Scientific has been significant. Earnings from POPS commercialization were reinvested in the company, which enabled Handix Scientific to grow from two people in 2015 to 12 full-time employees in 2021. “Currently, Handix Scientific is a very vibrant research and development company with seven Ph.D. graduates employed and close to 10 SBIR grants. We are developing several new products with federal funding support,” explained Chen. Handix Scientific has sold over 200 POPS units around the world, to date, with customers in China, France, Germany, Japan, Korea, United Kingdom, and the United States. Most of the demand for POPS comes from the research field, with scientists as the end users. The NOAA Chemical Sciences Laboratory is, in fact, the company’s biggest customer with 54 POPS units ordered so far and 28 more expected. Gao explained that this is the ultimate sign of success for a technology transfer. NOAA Labs and scientists are adept at developing new technologies, but they are not equipped to mass produce them.  Transferring the technology to a private company frees up the scientists to work on the science and enables a private company to refine and mass produce the NOAA design.  The company makes money and NOAA is able to procure a complete device at a lower per unit cost. Furthermore, the company expects POPS demand to increase as they are actively exploring how to break into new markets related to ambient and indoor air quality monitoring. To learn more about POPS, please view Dr. Gao’s presentation for the NOAA Innovators Series and explore related scientific publications and NOAA CSL field projects here. Note: Any reference obtained from this website to a specific company, product, process, or service does not constitute or imply an endorsement by NOAA. Published on August 24, 2021 by Miguel Aristu Media contact: suzi.webster@noaa.gov

Small Company Thrives on Commercialization of NOAA’s Miniaturized Particle Spectrometer Read More »

Saildrone Uncrewed Ocean Exploration Vehicle on the water

These 5 technologies are helping save our ocean

Protecting and exploring our global ocean is a huge job: It covers more than 70 percent of Earth’s surface. Cutting-edge technologies help us dive deeper, gather more ocean data and solve some of its biggest challenges.

Here are 5 innovative high-tech tools borne from NOAA’s partnerships with the fishing industry and technology companies large and small.

These 5 technologies are helping save our ocean Read More »

Lionfish gather around purse trap deployed under the ocean

NOAA Awarded U.S. Patent for Innovative Lionfish Trap

Device could help protect threatened ecosystems and aid fishing communities The Challenge Over the last 20 years, invasive lionfish populations have dramatically increased throughout the western Atlantic Ocean, Gulf of Mexico, and Caribbean Sea. Lionfish have already caused a decline in native species that have significant ecological, cultural, and commercial value. Further impacts on coral reefs and other important ecosystems are anticipated, but not yet fully understood. Fortunately, as the threat of lionfish has intensified, so too have the levels of awareness and concern among not just scientists and fishers, but among members of the public. In recent years, state-sponsored lionfish fishing derbies have incentivized divers to remove lionfish from coastal waters, and the growing demand for this tasty and widely-promoted sustainable seafood has surpassed the supply. Although spearfishing has proven to be an effective approach for managing populations in shallow areas, lionfish remain uncontrolled in deeper waters, where they continue to threaten fragile ecosystems (and evade dinner plates). Therefore, there is a demonstrated need and resounding demand for effective, non-destructive ways to capture lionfish that linger beyond recreational scuba depths. Innovative Solution NOAA’s recently-patented lionfish trap could be a solution that offers both ecological and commercial benefits. The trap is shaped like a change purse and is constructed primarily out of a hinged steel frame, attached netting, and a centrally-located vertical panel called a “fish attraction device.” Once deployed from the surface, the lionfish trap descends vertically through the water until it hits the bottom, where two curved extensions cause the jaws to spring open and lay flat on the bottom. The fish attraction device is then revealed, drawing lionfish towards the center of the six-foot diameter net. Later, the trap can be recovered by pulling on a surface line, which closes the trap’s hinged jaws and captures the fish within the ring of netting. This innovative technology was designed with specific operational and conservation-related goals in mind, and as a result, has several benefits over conventional fish traps. For example, the lionfish trap’s open non-containment design prevents “ghost fishing,” which is when gear “continues to fish” after being lost or abandoned. The lack of bait in the trap minimizes by-catch, or the capture of unwanted fish. Furthermore, the trap causes minimal damage to the ocean floor, is easily transportable on fishing boats due to its flat design, and is relatively simple to construct, deploy, and retrieve. Pathway to Patent The lionfish trap was invented by Dr. Steve Gittings, who serves as the Chief Scientist of NOAA’s National Marine Sanctuary Program. Gittings first had the idea for the trap in 2014, after attending a colleague’s presentation about modifying lobster traps so they could be used for deep-water lionfish capture. In the presentation photos, Gittings noticed that lionfish were present, but far more were hovering around the trap than inside it, and that inspired the idea to design a trap that would take advantage of lionfishes’ tendency to aggregate around vertical structures. “It started in my garage as a PVC cube,” said Gittings, who describes himself as a “Garagineer”. Over the next couple of years, the invention progressed through several phases of design and testing, during which the trap was modified to be less bulky, easier to deploy, and more enticing to lionfish. Throughout the process, Gittings engaged recreational and commercial fishermen from numerous places, including Florida, North Carolina, Aruba, Mexico, and Belize. Incorporating the input and expertise of these partners allowed Gittings to improve the lionfish trap so that it meets everyone’s needs. In addition to NOAA, much of the testing of the trap prototypes was supported by donations and funds from Lionfish University, ReefSave, and the Florida Fish and Wildlife Conservation Commission, and involved numerous volunteers and graduate students. The patent for Gittings’ trap, formally known as the “Apparatus for Harvesting Lionfish,” was filed in April 2018 and issued in February 2021. The Role of Technology Transfer Initially, Gittings did not consider patenting the trap. He explained, “My interest in developing these traps, as a civil servant, was to keep it as open-source as possible, so that anybody can use these to not only help support their fishermen, but to protect ecosystems around the Caribbean.” Gittings reached out to NOAA’s Technology Partnerships Office (TPO) after a colleague recommended that he speak with someone about potentially patenting the trap. TPO is NOAA’s research-to-commercialization office. Among other functions, TPO helps NOAA inventors patent their scientific and technological innovations and transfer them into the commercial marketplace, where they can more broadly impact ecosystems, communities, and economies. After speaking with TPO’s Technology Transfer Program Manager, as well as a representative from the National Institute of Standards and Technology (NIST) General Counsel Office, Gittings said he realized the best way to continue testing and improving the trap so that he could accomplish his goals was to “get control over the trap through patenting so that nobody else could stop us.” Gittings expressed gratitude for the support he received during the process of filing for the patent. “They interpreted everything I told them, going through every detail of the trap, and then put them on paper in language that the Patent Office understands. It was absolutely essential to have them do that work.” Looking Ahead Gittings’ long-term vision for the lionfish traps, should they prove to be an effective conservation method, is for fishers to use the traps outside of their primary fishing season. In using these lionfish traps, he said, “The fishermen would be supplementing their income and doing conservation at the same time.” Gittings added that a supplemental fishery targeting lionfish could also reduce the pressure on native species, such as snapper and grouper, which are overfished in some areas. And commercial use of the trap would provide an environmentally-friendly and reliable harvest for the seafood industry and its hungry customers. If the lionfish trap is successful, it will serve as another example of how technology transfer at NOAA contributes to realizing the agency’s guiding vision of healthy and resilient ecosystems, communities, and economies. The next step is to determine whether the traps are effective for controlling lionfish populations in deep water habitats. The prototypes were tested at depths of about 100 feet, but lionfish can be very abundant down to several hundred feet below the surface. In October 2020, the Reef Environmental Education Foundation (REEF) received a NOAA Saltonstall-Kennedy Competitive Grant to pursue this research and commercialization testing. REEF plans to collaborate with members of the Florida Keys lobster fishing community to test and improve various aspects of trap design, deployment, and long-term effectiveness.

NOAA Awarded U.S. Patent for Innovative Lionfish Trap Read More »