Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA Technology Transfer Awards

Each year, NOAA’s Technology Partnerships Committee selects individual projects as the best examples of technology transfer from across all NOAA’s Line Offices and Programs.  The purpose of this award is to recognize NOAA scientific, engineering, and technical employees for: (1) inventions or other outstanding scientific or technological contributions of value to the United States due to commercial applications and (2) exemplary activities that promote the domestic transfer of science and technology developed within NOAA and result in the use of such science and technology by American industry or business, universities, State or local Government, or other non-Federal parties. The current awardees are listed below.  Past years’ awardees have been archived in the News & Successes section of the website. 

2018 Awards

National Marine Fisheries Service

Implementation of an effective sampling and mapping program for early warning of harmful algal blooms in the Pacific Northwest. 

The team implemented an effective early warning system for harmful algal blooms for shellfish farmers, fish farmers, Native American Tribes, and State agencies—it includes a simple reporting database and real-time maps of harmful algae abundance to promote shellfish safety in the Pacific Northwest.

The Problem: 

Washington State is a national leader in bivalve shellfish, an industry that employs more than 3,200 people and contributes an estimated $270 million to the economy. Recreation and tourism associated with shellfish harvesting account for more than $1 million in revenue for license sales and an estimated economic value of $5.4 million annually. However, coast wide shellfish harvest is often severely impacted by harmful algal blooms that are increasing in geographical distribution, type, intensity, and frequency. 

The Need: 

Pacific Northwest state agencies and tribal co-managers were overwhelmed by the need to monitor increasing numbers of toxic algal blooms in more places, while detecting new types of toxins that had only recently been found in shellfish. The Washington State Department of Health reached out to the NWFSC Marine Biotoxin Team for assistance. As a result, in 2006, NOAA established a monitoring program to enhance Puget Sound shellfish safety, called SoundToxins. Over the past decade, this program has been optimized by NOAA staff to allow the transfer of a monitoring and mapping technology, now located on the website, to WA, OR, and AK state partners in 2017. SoundToxins partners include shellfish and fish farmers, environmental learning centers, community members, Native American Tribes, and state agencies who have been trained by NOAA staff to monitor for harmful algae weekly throughout Puget Sound, using protocols that have been improved over the past decade to allow for easy recording, submission, and viewing of data. 

The Technology Transferred: 

SoundToxins partners enter observations of harmful algae in real time into a customized database created by NOAA staff that has been refined over the last decade to make data entries easier and more accurate. NOAA staff created this user-friendly SoundToxins database, where phytoplankton abundances are converted into a “traffic light” mapping system (see figure, below) with specific abundance thresholds that enable public health officials and natural resource managers to rapidly visualize the reported data. This visualization helps to identify where toxic algal species are present so that shellfish tissue samples are immediately collected and analyzed in areas of high cell abundance (yellow and purple dots on the maps) to protect public health. State and tribal co-managers view SoundToxins maps daily, allowing them to determine where and when additional shellfish samples should be analyzed to protect public health. These managers immediately inform the commercial shellfish industry, tribes, and local health jurisdictions to take action. Once alerted, shellfish harvesters either move their operations to other growing areas or stop harvesting in the affected area. Specifically, the technology that has been transferred to state partners includes: 1) the SoundToxins monitoring program and database, and 2) the mapping system. Both are now served through the website, which is managed by the states (WA, AK, and OR).

Advantages the Technology Provides: 

The SoundToxins partnership preserves public confidence while protecting the income of shellfish harvesters in Puget Sound, by: 1) preventing shellfish recalls; 2) identifying new toxic species, which are then added to the monitoring protocols; 3) protecting public health by promoting shellfish safety; and 4) contributing data to the Puget Sound Water Quality Monitoring Program of the Puget Sound Partnership and the Phytoplankton Monitoring Network



The Technology Transfer Story:

The database and mapping system, initially developed by NOAA to rapidly assess the locations and risk of toxins in shellfish through real-time data entry, has expanded beyond Puget Sound to other parts of the United States, including the outer coasts of Washington, Oregon, and southeast Alaska. The SoundToxins program was established in 2006, and the transfer of the data entry and mapping system to state partners began in 2010 and was completed in 2017. These state partners include Washington Sea Grant, Washington State Department of Health, Oregon Department of Fish and Wildlife, and Southeast Alaska Tribal Toxins Partnership. State partners recently have acquired funds to support the SoundToxins activities. For a complete list of partners, including tribal co-managers of shellfish resources who are benefiting from the technology transfer, see the following websites:


National Environmental Satellite, Data, and Information Service

For development of an innovative suite of satellite command & telemetry processing modules for use by commercial, federal and international agencies. 

Mr. Liang serves as the Project Manager (PM) for the NESDIS Polar Orbiting Environmental Satellite (POES) series of legacy satellites that have been flown from the late 1970’s to present. This award is his predominant role in the POES sustainment contract that included tasking to investigate viable alternatives to replace legacy components with a more modular, extensible and flexible design to simplify maintainability of the units as well as substantially reduce the upfront per unit costs compared to the legacy products.  

Continuity of operations of NOAA’s environmental satellites on a 24x7x365 basis is a mission critical function of NESDIS in order to support the life and property preservation missions of U.S. Federal, State and local agencies as well as international partner agencies. The technology developed and transferred under this project replaces costly components used for satellite telemetry and command with a more modular, extensible and flexible design to simplify maintainability of the units as well as substantially reduce the upfront per unit costs compared to the legacy systems.  

Mr. Liang utilized his knowledge-based and participatory leadership styles and worked closely with the  project team, sharing his electronic engineering expertise with the group, which resulted in positive team dynamics and a universally shared desire to meet the objectives of the project.  In addition to cost and design flexibility factors mentioned above, a major benefit of the modular architecture was the incorporation of IT security compliance into the system design in order to isolate any hardware or firmware dependency on Operating System support.  Therefore, the system can be updated and patched without adverse impact to the hardware or firmware module. 

Over the course of the development period, three major integrated hardware/software deliverables were developed and successfully implemented into OSPO operations in support of multiple missions. These were the Command & Telemetry Transceiver (CaTT), the Consultative Committee for Space Data Systems (CCSDS) Command Telemetry Processor Compact Command & Telemetry Processor (CCTP), and the Satellite Telemetry Data Recorder (STDR). 

The CaTT unit includes a suite of telemetry processing functions in a compact, highly integrated and configurable unit utilizing state-of-the-art electronics to achieve performance exceeding that of the legacy commercial units. Due to its modular design, the unit is extensible to support multiple missions (polar/geostationary earth remote sensing and space weather) at 40% the cost of the legacy commercial unit. The CaTT also includes a ranging capability required for precise orbit determination of geostationary and space weather satellites. The CaTT is operational on multiple NOAA satellite missions including DSCOVR, COSMIC, and KOMPSAT5, with plans for deployment in support of MetOp in FY18. 

The STDR system provides high performance, highly-configurable, multiple channels data recording, storage, and playback capabilities that outperform those provided by the vendor of the legacy system recording system. These are critical functions required by any command and control system to enable timely diagnostics in the event of satellite anomalies, and/or to retransmit commands telemetry should a problem occur in the transmission during real-time operations. 

The CCTP receives satellite commands from the OSPO Satellite Operations Center, and then generates and transmits a modified subcarrier analog data stream to an external modulator for transmission to the satellite via antenna. The telemetry downlink subsystem receives data transmitted by the satellite and performs telemetry CCSDS processing functions to prepare the satellite data for further downstream processing in the ground system.

LJT & Associates is commercializing the technology and began marketing these products in 2016 once sufficient maturity had been achieved, and has the interest of several prospective customers. LJT will make slight modifications to the STDR and provide 32 such units to the Naval Air Systems Command (NAVAIR).  The NASA Wallops Flight Facility has expressed considerable interest in the CCTP based on a comparison with a COTS unit.  In addition, the Taiwan National Space Organization (NSPO) is evaluating CaTT product for use in their antenna ground equipment.