CRADA Success

CRADA Success Stories only.

A satellite image shows Hurricane Florence as it churns through the Atlantic Ocean toward the U.S. East Coast on September 11, 2018

NOAA’s Cooperative R&D Agreements – Supporting Partnerships with the U.S. Private Weather Industry

NOAA’s laboratories regularly partner with private sector companies through Cooperative Research and Development Agreements – CRADAs – to conduct work that is mutually beneficial and helps to accomplish the NOAA mission. One area of increasing collaborative activity is in private weather forecasting. A recent article in Grist.org provides a good description of how NOAA’s weather forecasting work overlaps with private industry and how they complement each other. Read the original article: As private weather forecasting takes off, who is left behind?

This rendering shows what the new Viking expedition ships will look like, including the hangar for launching small vessels. Credit: Viking

NOAA teams up with Viking to conduct and share science aboard new Great Lakes expedition voyages

NOAA plans to expand its research in the Great Lakes region as the agency teams up with the travel company Viking to carry scientists aboard new expedition voyages planned to begin in 2022. As part of the Cooperative Research and Development Agreement, NOAA scientists will join Viking expeditions in the Great Lakes to conduct research focused on changes in the region’s weather, climate, ecosystems and maritime heritage resources. NOAA scientists will also serve on the Viking Scientific Advisory Committee. Read the Full Story –>  

Mayday.ai graphical threat detection matrix.

New technology uses NOAA data to provide faster disaster warnings

Mayday.ai applies artificial intelligence to NOAA satellite imagery to detect natural disasters, starting with wildfires In 2017, as Kian Mirshahi watched wildfires rage across his home state of California, he wondered if there might be a way to get real-time information to first responders and citizens to help coordinate actions on the ground. More specifically, he wondered if Artificial Intelligence, or AI, might provide a key to faster decision-making. Fortunately, NOAA had recently rolled out two major developments, which provided the fuel for Mirshahi’s innovative drive. In 2016 and 2018, NOAA launched two new powerful geostationary satellites, GOES 16 and 17, which for the first time provided high-definition color imagery of the entire United States. At the same time, NOAA also kicked off a series of innovative Cooperative Research and Development Agreements with the major Cloud Service providers in the United States to provide easy access to NOAA data, especially GOES data. These agreements have since transitioned to an operational activity known as the NOAA Big Data Program (BDP). The BDP provided the general public the ability to access and analyze near real-time data feeds from GOES and other sources, without the need for a satellite dish and a supercomputer. This low-cost access to near real-time data, together with the powerful computing resources and advanced AI technology available on the Cloud Service Providers’ platforms, has opened the doors for small startups and innovators to make big impacts in NOAA’s mission areas. Mirshahi and his company, Mayday ai, are one of the early adopters in this new big data world. From Idea to Action Mirshahi founded his company, Mayday.ai, in May 2018 with the mission to help save lives, reduce costs and impacts of disasters, and protect the environment. Using multiple resources, including satellites, traffic cameras and social media, the company has developed a cloud-based platform which can provide centralized early warning and dispatch for first responders and emergency managers combating high-impact events, such as wildfires. “We believe our platform can improve the flow of critical information between first responders and to the public, which traditionally has been impeded due to the fragmented nature of the disaster management communications,” Mirshahi said. “At the same time, we believe our platform can directly involve people at the community level in order to build disaster resiliency.” Little did Mirshahi know, 2020 would prove to be a true trial-by-fire year for his new company. Into the Fire: 2020 Proof of Concept The 2020 fire season has been unprecedented in California, Oregon, and beyond, which has put Mirshahi’s concept quickly to the test and has provided multiple opportunities to evaluate and fine tune his early-warning technology. Mayday.ai has been training its analysis engine using Machine Learning to see through partial clouds, which has enabled Mayday.ai to detect a high proportion of wildfire events up to 15 minutes after starting and well in advance of 911 calls reporting the incidents. Mayday.ai has also enhanced its partial cloud detection technology to include lighting mapping every 10 minutes. This additional capability allowed Mayday.ai to quickly identify lightning-caused fires. This is particularly powerful in a year where records are being broken with dry lightning causing wildfires in areas with ongoing drought conditions. “Today we are seeing wildfire events as early as four hours ahead of 911 calls, from 22,000 miles above sea level,” said Mirshahi. Ultimately, we hope to work with all stakeholders locally, nationally, and globally to prevent these events from causing so much damage to lives and livelihoods.” Supporting Innovation The NOAA Big Data Program is just one part of NOAA’s newly-developed Cloud and Data strategies. With the volume and velocity of NOAA’s data expected to increase exponentially with the advent of new observing systems and increasing data-collection capabilities, these strategies will allow the agency to support this growth. “Had NOAA not given us a chance to get access to real time data for our initial hypothesis testing, we simply wouldn’t have been able to start this project” said Mirshahi. “As we build a platform for community-level disaster management, NOAA and its big data efforts continue to be integral to our business.” The NOAA Technology Partnerships Office is a key link for increasing the impact of the public’s investments in NOAA’s science and engineering. Through a portfolio of Cooperative Research and Development Agreements, which enable NOAA scientists and engineers to work closely with their counterparts in the private sector, and seed funds provided to small businesses through the Small Business Innovation Research Program (SBIR), NOAA is supporting innovation, the U.S. economy, and our critical mission goals. “Aligning NOAA’s capabilities with the constantly evolving needs of our stakeholders requires both collaboration and partnerships to deliver data and services in a way that stakeholders expect to consume them,” said Neil Jacobs, Ph.D., acting NOAA administrator. “Creative partnerships with commercial cloud providers set NOAA apart from others in making more of its data publicly accessible.” NOAA’s vast data sets are a fantastic resource, but without interpretation and application to the needs of the public, they are just large sets of numbers. While NOAA provides a wide range of products and services to the public using these data, the agency will continue to seek out innovators like Mirshahi and Mayday.ai to add even more value and to help us achieve our mission.

Public-private research partnerships are fueling NOAA innovation

A record number of NOAA Cooperative Research and Development Agreements in 2021 has generated scientific and economic benefits Research partnerships are increasingly important as scientists work to address complex global problems like coastal resilience, food security, and climate change. Public-private partnerships, in particular, are vital for bringing private sector innovation and agility into NOAA’s research and development efforts. One of the key tools in NOAA’s partnership toolkit is the CRADA, or Cooperative Research and Development Agreement.  A CRADA is a formal agreement that allows federal and non-federal partners to do collaborative research and further develop new science into commercially-available products. CRADAs connect NOAA Laboratories or Science Centers with private U.S. companies, universities, and other entities, creating scientific partnerships across NOAA’s mission areas. CRADAs are valuable because they allow NOAA and non-federal partners to share ideas, technical expertise, facilities, and other research materials. The NOAA Technology Partnerships Office (TPO) is responsible for managing all of NOAA’s CRADAs. During Fiscal Year 2021, TPO initiated 18 new CRADAs, which is the highest number of these agreements ever to be started in one year at NOAA. This represents a 28% increase in the total number of new CRADAs from the previous fiscal year. Furthermore, NOAA and its research partners benefitted from a total of 57 active CRADAs this year, representing an increase of 24% from 2020. The number of CRADAs at NOAA is increasing as more federal researchers and non-federal partners see the value of existing public-private research and development efforts. Collaborations between NOAA and private-sector innovators accelerate research and development that supports both NOAA’s operations and commercialization within the private sector. This is important because more people can benefit from cutting-edge scientific discoveries and inventions when they are available on the commercial market. One example of an ongoing CRADA collaboration is NOAA’s partnership with U.S. biotechnology company, Prospective Research, Inc. NOAA researchers developed a probiotic to prevent disease in oysters and then began a public-private partnership with Prospective Research to further develop and test a freeze-dried version of the formula. The new shelf-stable probiotic has been shown to increase the survival rate of oyster larvae by 20-30% and is expected to be commercially available in 2022. The probiotic has the potential to increase sustainable aquaculture production worldwide. Another partnership between NOAA and the U.S. business, Saildrone, has simultaneously increased NOAA’s capacity to conduct innovative research and provide high-quality climate services, while also directly benefiting Saildrone and the U.S economy, more broadly. NOAA and Saildrone entered into a CRADA to explore how the company’s ocean drone technology could be further developed and strategically used to collect environmental data. Saildrone’s products have since been modified to support diverse NOAA research projects in the Arctic, across fisheries, around Antarctica, and even in the eye of a hurricane. The hurricane-equipped Saildrone Explorer was recently named one of the 100 Greatest Innovations of 2021. Video footage from on board Saildrone 1045 and animation showing location in Hurricane Sam on Sept. 30, 2021. As a result of this fruitful research partnership, NOAA scientists have been able to use the newly-collected data to improve storm forecasts, fisheries management, and climate services, while Saildrone has enjoyed a significant boom in business. According to a 2019 economic valuation study, during the three years after the 2014 CRADA with NOAA was established, Saildrone expanded their workforce from eight to over 100 employees and secured over $95 million in third-party investments into their technology. This influx of interest and sales can be partially attributed to the perceived scientific rigor associated with NOAA’s involvement in Saildrone’s product development. The economic benefits of Saildrone’s technology continue to increase– in October 2021, Saildrone announced the close of its $100 million Series C funding round. The company’s continued growth and success is creating jobs in several industries and is a significant asset for U.S. economies, especially in areas where Saildrones are created and deployed. While the NOAA-Saildrone partnership has been particularly successful, the cumulative impact of more than 50 active NOAA CRADAs underway cannot be overstated from either a scientific or an economic perspective. The collaborations increase NOAA’s capacity to do scientific research, while also stimulating technological innovation and generating broad economic value for the U.S. economy, the global New Blue Economy, and individual U.S. businesses. This economic impact was particularly important during the global COVID pandemic, so it is especially notable that NOAA reached its highest-ever annual number of new CRADAs during Fiscal Year 2021. Over the next year, TPO hopes to continue to expand NOAA’s use of CRADAs as a way to create partnerships. TPO is working with NOAA scientists and engineers to help them evaluate how a CRADA or other type of research partnership can most effectively support their research objectives. TPO also serves as the lead of the Partnerships Working Group under the Science and Technology Synergy Committee of the NOAA Science Council. TPO will continue to highlight the many ways that public-private partnerships support NOAA’s mission and stimulate innovation of new products bound for the commercial market. As scientific research is called upon to inform solutions for some of society’s most pressing challenges, partnerships are essential and CRADAs unlock enormous potential for collaborative problem-solving and innovation.